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SURFACE-DECOUPLED ALTITUDINAL AND AZIMUTHAL TRIPTYCENE-FUSED 
TETRAPODAL MOLECULAR MOTORS 

 
Kateřina Bezděková,a,b Lukáš Severa,a Eva Kaletová,a Katarina Majerová Varga,a  

Milan Mašát,a Liang-Ting Wu,c Jyh-Chiang Jiang,c Ivana Císařová,d and Jiří Kaleta*a 
 

a Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 
Flemingovo nám. 2, 160 00 Prague 6, Czech Republic. b Department of Organic Chemistry, 

Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 
Prague 166 28, Czech Republic. c Department of Chemical Engineering, National Taiwan 

University of Science and Technology, Taipei 106, Taiwan. d Department of Inorganic 
Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, 

Czech Republic 
 

 The development of molecular machines capable of converting light energy into controlled 
mechanical motion on surfaces is a major frontier in nanoscale engineering. Achieving efficient 
operation of unidirectional light-driven motors on surfaces requires simultaneous control over 
multiple design parameters, including orientation, anchoring, electronic decoupling, structural rigidity, 
and spatial isolation.1 

Here, we report the design, synthesis, and surface-immobilized operation of two geometrically 
distinct, photoresponsive molecular motors (Figure 1), each based on a rigid tetrapodal triptycene 
scaffold. These systems differ in the orientation of their rotation axes—nearly parallel (altitudinal) or 
perpendicular (azimuthal) to the gold substrate. Both motors exhibit unidirectional rotation upon light 
stimulation, as demonstrated through photochemical studies in solution and functional self-assembled 
monolayers on Au(111). Strong surface adhesion is achieved via multidentate anchoring, while the stiff 
triptycene core ensures structural integrity and isolation from neighboring units. These molecular 
architectures represent versatile, surface-compatible components for next-generation light-driven 
nanomachinery.2 

 

Figure 1. Four-stages unidirectional rotation cycle of molecular motors. 
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Mechanochemical control over molecular motors in elastomer networks 
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 The integration of artificial molecular machines into soft matter has opened avenues to 
regulate macroscopic material properties, yet such approaches have largely remained one-directional: 
from the molecular to the macroscopic1. Harnessing the full potential of artificial molecular machines 
requires going beyond this paradigm and enabling feedback, where machine function adapts to 
environmental conditions2, as in biology. For example, the rotary motor of Escherichia coli modulates 
its rotation speed according to the viscosity of the surrounding medium3. Inspired by this principle, we 
show that overcrowded-alkene molecular motor embedded in polymer networks accelerates its rotary 
frequency under mechanical stretching. By combining full-spectrum UV–Vis fitting with kinetic 
analysis, we directly quantify the force-accelerated thermal helix inversion steps within the rotary 
cycle. This work introduces a strategy to actively couple mechanical stress with molecular motor 
dynamics, providing a foundation for the design of adaptable materials that integrate artificial 
molecular machines as responsive elements. 
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Precise chemical tools for photopharmacology based on Hemipiperazines 
 

Fabian Klotz,a,b Peter Gödtel,a Maximilian Weß,a Zbigniew L. Pianowskia,b 
 

a Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131 Karlsruhe, 
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Technology KIT, 76344 Eggenstein-Leopoldshafen, Germany 
Photopharmacology is an emerging drug development approach that harnesses light to 

achieve precise spatiotemporal control over therapeutic activity. Inspired by Paul Ehrlich’s “magic 
bullet” concept of selectively targeting diseased tissues while sparing healthy ones, 
photopharmacology aims to overcome common limitations of traditional therapies such as systemic 
toxicity, off-target effects, and drug resistance. This strategy relies on light-induced isomerization of 
molecules, where each isomer exhibits distinct biological activities. Common photoswitches such as 
azobenzenes and spiropyrans have been widely studied but suffer from key drawbacks, including 
activation by UV light, toxic metabolites and hydrophobicity, limiting their application in aqueous 
biological environments.1 

To address these limitations, hemipiperazines (HPIs), a novel class of peptide-derived 
photoswitches, have emerged as promising alternatives. HPIs are activated by visible light and 
+function effectively in aqueous environments, making them well-suited for therapeutic applications. 
We have synthesized a key intermediate as part of our ongoing efforts to develop a trimethoprim 
(TMP)-HPI conjugate.2  

Natural products such as neihumicin and nocazines, which inherently possess hemipiperazine-
like motifs, exhibit notable cytotoxic and antibacterial properties, positioning them as valuable 
scaffolds for photopharmacological development. As we plan to synthesize them, we explore the 
influence of methylation pattern and other structural modifications within the diketopiperazine (DKP) 
core, and their influences on the photoswitching behavior. By elucidating these structure–function 
relationships, we aim to guide the rational design of next-generation HPI-based therapeutics with 
enhanced selectivity, efficacy, and photochemical performance. 

 

Figure 1: left: A: key intermediate for the TMP-HPI conjugate; structure of dihydrofolatreductase with TMP; TMP-
HPI conjugate right: thiophen-HPI and its core modifications; C: neihumicin; E: nocazine A 
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PHOTOSWITCHABLE CUCURBIT[7]URILS 
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 Self-assembled monolayers (SAMs) with photoresponsive functionality were constructed on 
gold surfaces through the use of host–guest complexes incorporating cucurbit[7]uril (CB[7]). In this 
system, CB[7] functions as a universal anchoring motif, binding to the gold substrate via one of its 
portals, while the opposite portal captures a photoswitchable molecular rod bearing a pyridinium–
adamantyl recognition element. To showcase the flexibility of this modular design, four different 
molecular rods were synthesized. In solution, the supramolecular CB[7] complexes[1] maintained the 
intrinsic light-responsive behavior of the original rods, undergoing reversible isomerization with 
minimal influence from complexation and demonstrating excellent fatigue resistance. Once 
immobilized on surfaces, the resulting monolayers preserved their photoactivity, as confirmed by the 
light-triggered isomerization of a representative diarylethene derivative. These findings highlight the 
promise of CB[7]-mediated architectures in developing stable, switchable molecular interfaces and 
devices. 

 

Figure 1. Synthesis of molecular rods 1-4 and their reaction with CB[7] leading to supramolecular complexes 1-
4·CB[7]. CB[7]: a schematic representation (A), chemical structure (B), and top (C) and side (D) view on a space-
filling model. Idealized visualization of 1·CB[7] on a gold surface (E). 
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Sensitized Azoarene Disequilibration with water soluble polymers 
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Molecular photoswitches are a popular motif to integrate light-responsivity to a supramolecular 
system. As the E-Z isomerization of unsubstituted azobenzenes can only be achieved by irradiation 
with UV-light, great synthetic effort has been put into red-shifting this excitation wavelength to the 
visible and NIR region, introducing different substitution patterns, opening up possibilities to be used 
in the medical sector. Recently, Gemen et al. presented a novel approach to red-shift azobenzene-
isomerisation, called “DESC”, confining different azobenzenes alongside a sensitizer molecule within a 
supramolecular cage, allowing triplet-energy-transfer from the sensitizer onto the azobenzene, 
yielding the isomerisation of the molecular switch, circumventing the need for tedious synthetic 
modifications.1 We are advancing this technique into water-soluble polymeric systems, probing its 
general potential for macromolecular systems. Our study focuses on dimethylacrylamide based 
azopolymers and BODIPY-polymers, optimizing both the polymer architectures but also photoswitch 
structure to maximize switching using DESC, reaching up to 70 % efficiency for azopolymers and nearly 
quantitative switching of monomeric azopyrazoles using BODIPY-polymers. The combination of both 
polymeric systems or the use of bivalent linkers is probed as platforms for the creation for 
supramolecularly linked polymeric assemblies. These will serve as basis for the creation of hydrogels 
or other soft materials. 

REFERENCES 

1. Gemen, J.; Church, J. R.; Ruoko, T.-P.; Durandin, N.; Bialek, M. J.; Weissenfels, M.; Feller, M.; Kazes, M.; 
Odaybat, M.; Borin, V. A.; Kalepu, R.; Diskin-Posner, Y.; Oron, D.; Fuchter, M. J.; Priimägi, A.; Schapiro, I.; Klajn, 
R. “Disequilibrating azobenzenes by visible-light sensitization under confinement”. Science, 2023, 381, 1357-
1363. 

 

  



 

Poster 6 
 

Engineering molecular rotors and switches in low-density architectures: from 
single-molecule motion to framework dynamics 
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Danowski,b,d Ben L. Feringa,b Jiří Kaleta,e Angiolina Comottia 
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The arrangement of dynamic building blocks, such as molecular rotors and switches, in close proximity 
to one another with precise geometry and topology, is realised in low-density framework materials, 
including Metal-Organic Frameworks (MOFs) and Porous Aromatic Frameworks (PAFs). We reported 
on the benchmark dynamics of the isolated di-carboxylate bicyclo[1.1.1]pentane (BCP) molecular rotor 
within a cubic zinc MOF.1 Indeed, 1H T1 relaxation NMR and muon-spin spectroscopy revealed 
hyperfast rotary motion in the gigahertz regime even at temperatures as low as 2 K, with a negligible 
energy barrier (Ea) of 6.2 cal·mol-1. Pillared-layer MOFs comprising bipyridine-based co-ligands 
generate 3D structures where the BCP rotors can interact with their neighbours.2 Indeed, these rotors 
navigate the rotational potential energy landscape to produce co-rotating pairs of rotors. These geared 
molecular rotors have very low energy barriers for rotation (24 cal·mol-1) owing to the synchronicity of 
their rotation. Fluorinated MOFs, comprising a wheel-shaped ligand with geminal rotating fluorine 
atoms, produced a benchmark mobility of correlated dipolar rotors at 2 K, with practically null 
activation energy (Ea = 17 cal·mol-1), promising innovative applications as electric-field-responsive 
porous materials.3 Light-responsive Porous Switchable Frameworks (PSFs) based on bistable 
chiroptical overcrowded alkenes exhibit high surface area (up to 3950 m²·g-1) and reversible bulk 
photoisomerization in the solid state. Notably, their porosity and gas sorption properties can be 
reversibly modulated in response to light and heat, mimicking a sponge-like behaviour.4 Spiropyran-
based materials, created via in-situ solid-state grafting, maintain high porosity and reversibly switch to 
zwitterionic merocyanine under chemical or physical stimuli.5 These materials show promise for on-
command pH control, gas uptake/release, ion capture, and water harvesting. Orthogonal PSFs 
combining different molecular switches enable the selective activation of four states using distinct light 
wavelengths, paving the way for complex, responsive frameworks with emergent properties.6 
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Photoswitchable Molecular Systems: Design, Evaluation, and Applications    in 
Data Transmission and Photopharmacology 
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Systems – FMS, KIT, Eggenstein-Leopoldshafen, Germany. c Centro de Investigación y de Estudios 
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To harness the properties of photoswitches for data transmission, we proposed the design of 
compounds that function as a multiplexer/demultiplexer as a complex logic gate.1 In this system, two 
distinct types of inputs are required: a) a chemical input that encodes information and regulates the 
output, represented here by protons (acid equivalents), and b) a photonic input provided by light, 
which operates the photoswitch. To achieve this, a collection of pseudo‐hemiindigoids was synthesized 
and successfully validated as such logic gates (Figure 1).2  

To apply the properties of photoswitches within pharmacology, ANA-12 is a well‐studied TrkB inhibitor, 
with reported antidepressant, anxiolytic, and antineoplastic properties.3 However, administration of 
ANA-12 at high doses has been associated with neuronal loss and neurotoxic effects, highlighting the 
need for precise spatial and temporal control over its bioactivity. Thus, we explore the synthesis of 
photoswitchable ANA-12 analogues, either by their decoration with azobenzenes (A), or by replacing 
structural fragments with photochromic motifs (B). The synthetic targets were evaluated in silico, 
employing molecular docking and theoretical calculations (Figure 2).  

                   

Figure 1. Molecular logic gates.                                       Figure 2. Photoswitchable ANA-12 derivatives.  
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Controlling molecular motion in azobenzene based molecular brakes and 
hemithioindigo-based macrocyclic molecular motors with light 
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Attaining precise control over molecular motion is a central topic in molecular machine research. 
Especially light-driven variants are highly desirable as they use easy to provide, easy to dose, and 
waste-free fuel with high energy content and high spatio-temporal control. Here we present two 
approaches to achieve precise control of molecular motion in (visible) light-driven molecular machines 
and elucidate their design and working principles with a combination theoretical and variable 
temperature NMR methods.  
First, we show that azotriptycenes can serve as a structural framework for photoswitchable molecular 
brakes, which change their intrinsic kinetics in response to light irradiation. Upon cis/trans 
isomerization of the azobenzene-triptycene hybrids, the C-N bond rotation rates can be reversibly 
decelerated or accelerated by up to five orders of magnitude. The respective rate change effects are 
highly localized and are strongest for the 120° rotation around the C-N bond connecting the triptycene 
rotor fragment to the diazo group. 
In a second study, we demonstrate how the unidirectional rotation around a dedicated chemical bond 
can be reprogrammed into unidirectional rotation around a virtual axis. To this end, a classical 
hemithioindigo molecular motor is restricted by macrocyclization, and its intrinsic directional rotation 
around the C=C bond is transformed into a directional rotation of the macrocyclic chain in the opposite 
direction. A further level of control is achieved by simply changing the solvent polarity, which allows 
to toggle the function of this molecular machine between a directional motor and a nondirectional 
switch. 
Both studies open up new concepts for designing light-driven molecular machines and provide a basis 
for analyzing and precisely controlling their motions at the nanoscale. 
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Photomodulation of Plinabulin –  
a Tubulin Polymerization Inhibitor with low-nanomolar Toxicity 
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Photopharmacology has attracted growing interest in recent years. In this research area, molecular 
photoswitches are attached to bioactive agents to precisely control their activity both temporally and 
spatially. For example, the severe side effects of chemotherapy may be significantly reduced by local 
activation of a photomodulable drug in tumor tissue. However, modulation of the structure of a 
bioactive agent with a photoswitch often suffers from drastic reduction in its activity or biostability. 

Plinabulin is a tubulin polymerization inhibitor with low-nanomolar activity which is currently in phase 
III clinical trials against non-small cell lung cancer (NSCLC) and chemotherapy-induced neutropenia 
(CIN). We found that plinabulin itself is capable of photomodulation without further modification as it 
contains a previously unexplored photoswitch motif in its structure, which we refer to as 
hemipiperazine (HPI). In contrast to other photopharmacological agents, plinabulin does not suffer 
from loss of activity due to structural changes and furthermore exhibits pronounced thermal stability 
and compatibility with aqueous media. In addition, the difference in toxicity between the two isomers 
is significant, being 85-fold (unidirectional) and 11-fold (bidirectional), respectively.1 Recently, we were 
able to use the in vivo photomodulation of plinabulin to reversibly influence the early development of 
zebrafish embryos.2 

 

 

Figure 1: a The two photoisomers of plinabulin; b differences in the cytotoxicity of the isomers can be quantified 
via MTT assay and c demonstrated for the development of zebrafish embryos. 
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 The pioneering discovery of light-driven molecular motors by Feringa in 1999 introduced 
unidirectional rotary motion at the nanoscale.1 Later, in 2011, Feringa’s group presented the concept 
of a “molecular gearbox,” in which a single aryl substituent attached at the stereogenic center acted 
as a secondary rotor, its motion modulated by the motor cycle.2 In 2018, Dube and co-workers 
transmitted motor rotation to a remote biaryl axis via an ethylene glycol linker, demonstrating long-
range coupling of motion.3 These representative systems are illustrated in the attached structures, 
alongside our newly designed construct. 

In our work, we investigate a Feringa-type motor covalently linked to a thermally driven molecular 
rotor, specifically a dimethylanthracene unit. This arrangement can be regarded as a new type of 
molecular gearbox, in which the motor’s unidirectional cycle biases and synchronizes the otherwise 
stochastic dynamics of the thermally driven Brownian rotor. The coupled rotation was confirmed by 
theoretical calculations. The system was further examined by NMR and UV–Vis spectroscopy. 

Our results show that deterministic molecular motor motion can be transmitted to a Brownian rotor, 
converting random fluctuations into synchronized rotation. This hybrid design bridges stochastic and 
deterministic dynamics at the molecular scale, opening new avenues for the design of integrated, 
multicomponent molecular machines. 
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Hemipiperazines: Biocompatible Photoswitches for Medical Applications, 
Fluorophores, and Fluorescent Sensing 
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 Plinabulin is a low-nM inhibitor of microtubule dynamics, recently in advanced FDA clinical 
trials against NSCLC and other human tumors. 1 Our group discovered a new photochromic motif, 
hemipiperazine (HPI), in plinabuline’s structure. Its arylidene group undergoes reversible E/Z 
photoisomerization while also exhibiting a long thermal half-life. 2  

 Building on these findings, monosubstituted DKP derivatives with electron-donating 
heteroarylidene groups were investigated to exploit the biocompatible nature of these cyclic 
dipeptide-derived switches while inducing a red-shifted absorption spectrum for therapeutic 
relevance. This strategy was based on reports of bathochromic shifts observed in other photochromic 
scaffolds (azobenzenes, indigoids) upon substitution with heteroarenes. In contrast to carbocyclic 
HPIs, the heterocyclic HPIs exhibited more efficient photoconversion with less spectral overlap. 
Moreover, the heteroarylidene HPIs displayed several additional favorable properties, such as good 
thermal stability, good isomerization efficiency in aqueous media, and resistance to reducing agents. 3  

 Further considerations also led to the development of fluorescent, double-substituted 
HPIs, capable of forming metal complexes and sensitive to the protonation state of their heterocycles, 
which allows them to act as sensors for Zn2+ and Cd2+. 4 Another approach involved the synthesis and 
characterization of “locked HPIs”, which contain π-systems annulated to the HPI core. These 
compounds show promise as photoswitchable fluorophores, exhibiting significant, tunable 
fluorescence with quantitative isomerization inducible at visible and even red-light wavelengths. 5 
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Controlling chiroptical properties is central to next-generation photonic technologies. Chiroptical 
photoswitching uniquely employs light both as a trigger for modulation of the chiroptical response and 
to read out chiroptical signals. Conventional chromophore-embedded chirality limits performance. 
Here, molecular confinement offers orthogonal control: photoswitches with remote chiral groups 
become chrial only upon encapsulation in a hexameric capsule, which induces folding and chirality 
transfer. This enables robust, reversible switching, while competitive guest exchange restores the 
achiral state. The strategy broadly activates dormant chiroptical responses, making them light-
addressable and supramolecularly tunable.[1] 

 

Boronic-Acid Photocaging for Visible Light-Controlled Applications in 
Synthesis 
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Nikolaus-Fiebiger-Str. 10, 91058 Erlangen (Germany). 

 
Photolabile protecting groups (PPGs) enable simple masking of functions and controlled release by 
light. While widely applied, boronic acids have only recently become accessible to photocaging. We 
introduce a single-step PPG strategy for visible-light-triggered release of aromatic boronic acids, 
demonstrated in sequential cross-coupling and light-controlled macrocyclization, establishing boronic 
acid photocaging as a versatile synthetic tool.[2] 
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